Long-Term Stochastic Modeling of Monthly Streamflow in River Nile

نویسندگان

چکیده

Synthetic time series created from historical streamflow data are thought of as substitute events with a similar likelihood recurrence to the real event. This technique has potential greatly reduce uncertainty surrounding measured streamflow. The goal this study is create synthetic model using combination Markov chain and Fourier transform techniques based on long-term for Nile River. First, chain’s auto-regression applied, in which data’s trend seasonality discovered eliminated before applying Pearson III distribution function. function substituted by discrete (DFT) second approach. applicability two simulate between 1900 1999 evaluated. ability generated maintain four most important statistical properties samples monthly flows, i.e., mean, standard deviation, autocorrelation lag coefficient, cumulative distribution, was used assess quality series. results reveal that techniques, small differences accuracy, reflect variation well terms three mentioned parameters. According coefficient determination (R2) normalized root mean square error (NRMSE) statistics, approach somewhat superior simulating predicted discharge.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical–Dynamical Approach for Streamflow Modeling at Malakal, Sudan, on the White Nile River

The upper White Nile Basin above Malakal, Sudan, is considered to be one of the most complicated and diverse hydrologic settings on Earth. Accurately depicting and predicting the streamflow at Malakal is essential for water managers considering Nile Basin-wide initiatives and potential large-scale projects. Dynamical, statistical, and combination models are assessed for their ability to predict...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Simulation of Long-term Returns with Stochastic Correlations

This paper focuses on a nonlinear stochastic model for financial simulation and forecasting based on assumptions of multivariate stochastic correlation, with an application to the European market. We present in particular the key elements of a structured hierarchical econometric model that can be used to forecast financial and commodity markets relying on statistical and simulation methods. The...

متن کامل

Stochastic Methods for Modeling Precipitation and Streamflow

Stochastic simulation and forecasting of hydroclimatic processes, such as precipitation and streamflow, are vital tools for risk-based management of water resources systems. Stochastic hydrology has a long and rich history in this area. The traditional approaches have been based on mathematical models with assumed or derived structure representing the underlying mechanisms and processes involve...

متن کامل

Uncertainty Analysis of Monthly Streamflow Forecasting

Streamflow forecasting is an important factor in water resources planning and management. In this study Feed Forward Artificial Neural Network (FFANN) was used for monthly streamflow forecasting. Three scenarios were considered for modeling. Principal Component Analysis (PCA) is used for reducing the model architecture complexity and input data reduction. Twelve statistical criteria were used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2023

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su15032170